Simple One-Pot Preparation of 1,2-Diacetoxy-2-propene. A Convenient Precursor of 1-Acetoxy-3-chloro-2-propanone

Kunikazu SAKAI* and Kiyosi KONDO
 Sagami Chemical Research Center,
Nishi-Ohnuma, Sagamihara, Kanagawa 229

From a neat mixture of acetic anhydride and propargyl alcohol, 1,2-diacetoxy-2-propene was prepared by successive treatment with an acid catalyst and a Ru catalyst in one-pot procedure. The product was a convenient precursor of 1-acetoxy-3-chloro-2-propanone.

1-Acetoxy-3-chloro-2-propanone (1)1) has been known as an important synthetic reagent for various heterocycles,2) and cephalosporins.3) We found out that the acetone derivative 1 could be obtained quantatively by the action of hypochlorous acid on 1,2-diacetoxy-2-propene (2) (equation 1).4) The process seems to provide an useful preparative method of 1, if 2 was available conveniently. Here, we wish to describe on the effort to prepare 2 by a simple practical procedure.

When an equimolar mixture of propargyl alcohol and acetic anhydride without solvent was treated with a trace amount of acid such as sulfuric acid, a vigorous reaction occured to give an equimolar mixture of 1-acetoxy-2-propyne (3) and acetic acid (equation 2). The next step of regioselective addition of acetic acid to the triple bond on 3 was achieved in the reaction mixture using a Ru catalyst system (equation 3) as shown in Table 1. A recently reported catalyst system, composed of Ru(η^5 -cyclooctadienyl)₂/ PR₃ /maleic anhydride in the ratio of 1:2:2, which had shown high regioselectivity to give 2 in a solvent,⁵⁾ provided only

AcO
$$\stackrel{\bullet}{\longrightarrow}$$
 HOCI AcO $\stackrel{\bullet}{\longrightarrow}$ CI (1)

Ac2O + HO $\stackrel{\bullet}{\longrightarrow}$ H $\stackrel{\bullet}{\longrightarrow}$ AcOH + AcO $\stackrel{\bullet}{\longrightarrow}$ OAc (2)

AcOH + AcO $\stackrel{\bullet}{\longrightarrow}$ AcO $\stackrel{\bullet}{\longrightarrow}$ AcO $\stackrel{\bullet}{\longrightarrow}$ OAc (3)

Run	Catalyst ^{a)}	Conditions		Product distribution ^{c)} /%		
		Temp/°C	Time/h	2	4 (Z)	4 (E)
1	Ru(②) ₂ /PBu ₃ /MA ^{b)} 1:2:2 ⁴⁾					········
	1:2:2 ⁴⁾	98	3	58.5	14.9	26.6
2	1:4:4	98	4	85.4	5.7	8.9
3	1:6:6	98	4	90.0	4.9	5.1
4	Ru ₃ /(CO) ₁₂ /PBu ₃ /MA	<u>.</u>				
	1:6:6	98	4	90.2	4.2	5.6
5	RuCl ₃ /PBu ₃ /MA					
	1:6:6	98	4	86.2	6.6	7.2

AcOH + 3 $\frac{\text{catalyst}}{}$ 2 + 4(Z) and 4(E) Table 1.

a) 0.5 M% for Ru nucleus was applied. The catalyst was prepared in acetic acid by heating the mixture (1.5 M solution for Ru) until it become a clear solution. The catalyst solution was added with syringe into the reaction mixture. b) MA=maleic anhydride. c) The ratio was determined by GLC.

a poor selectivity (run 1). But, increased ratio of ligands to Ru nucleus improved the regioselectivity sharply (runs 2 and 3). Moreover, the catalyst systems prepared from other Ru compounds such as Ru3(CO)12 and anhydrous RuCl3 (runs 4 and 5) provided nearly the same regioselectivity when compared with the result of run 3. The results suggested that the catalyst systems prepared from these Ru compounds should have a common structure. In practice, 2 was isolated purely in 82% conversion yield by direct distillation from the reaction mixture in a large scale trial.

In conclusion, we developed a convenient and practical method for the preparation of 1,2-diacetoxy-2-propene (2), starting from a neat mixture of propargyl alcohol and acetic anhydride in one-pot procedure, by successive treatment with an acid catalyst and a Ru catalyst, utilizing both of acetyl and acetoxy groups in acetic anhydride molecule for the formation of two acetoxy groups on 2.

References

- 1)
- Shionogi and Co., Ltd., Japan Kokai Tokkyo Koho, JP83-72521 (1983).
 Kanebo Co., Ltd., Japan Kokai Tokkyo Koho, JP89-199979 (1989);
 Shionogi and Co., Ltd., Japan Kokai Tokkyo Koho, JP83-72581 (1983);
 W. F. Haley and M. W. Fichtner, J. Org. Chem., 45, 175 (1980); J. D. 2) Bourzat, D. Farge, A. Leger, and G. Ponsinet, Ger. Offen., 2821555 (1978).
- B. G. Christensen and R. W. Ratcliff, USP 4099000 (1978); R. Lottrell 3) and G. Lohaus, Ger. Offen., 2325770 (1970).
- K. Sakai and K. Kondo, Japan Kokai Tokkyo Koho, JP90-172942 (1990).
- T. Mitsudo, Y. Hori, Y. Yamakawa, and Y. Watanabe, J. Org. Chem., 52, 2230 (1987); Y. Hori, T.Mitsudo, and Y. Watanabe, Tetrahedron 5) Lett., 27, 5389 (1986).

(Received June 20, 1990)